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Abstract

Specular highlights are everywhere in our daily lives.
However, they are often undesirable in the photography
community, as they can severely bury the details of objects
in the scene and degrade the image qualities. Existing high-
light removal methods primarily rely on strict assumptions
and can easily fail in scenes with complex backgrounds
and illumination conditions. Although the success of deep
learning techniques has been witnessed in many low-level
vision areas, such as image denoising and image super-
resolution, there is still few explorations of deep learning
in the highlight removal area. This is partly due to the
fact that there exists no large scale datasets of high-quality
training data. In this paper, we propose to address the sin-
gle image highlight removal problem from the following as-
pects. First, to facilitate the learning process for highlight
removal, we construct a large scale synthetic dataset, which
contains 11000 pairs of images with/without highlights. It
will be made publicly available for future research. Sec-
ond, we propose a novel Cumulative Dense Feature Fusion
network, called CDFF-Net, to take full advantages of low-
level features for producing high-quality highlight-free im-
ages. Moreover, a cascaded learning scheme is applied to
first learn the residual specular layer, and then remove the
corresponding specular highlights according to the specu-
lar prediction. We conduct extensive evaluations on both
synthetic and real data to verify the superiority of the pro-
posed method against the state-of-the-art highlight removal
methods. We also demonstrate the potential of the proposed
network for other low-level vision tasks such as single im-
age deraining.

1. Introduction

Specular highlights can be easily observed in our daily
lives, as long as there is a light source. However, as they
will bury the object details and distort the object colors,
highlights are often annoying to photographers. The de-
graded images suffering highlights can further fail existing
computer vision tasks, such as object detection, semantic
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Figure 1: State-of-the-art specular highlight removal
method [ 1] still under/over remove the highlights from the
objects, which produces images with disrupted object ap-
pearances and noisy background. Our CDFF-Net can accu-
rately remove the highlights and preserve the images with
clean background.

segmentation, efc. Hence, it is necessary to remove the
highlights from the input images.

As it is an extremely ill-posed problem, a line of previ-
ous works [27, 49, 48, 28, 40, 42] typically take advantage
of multiple input images so that additional constraints can
be imposed. Other methods [47, 51, 50, 43, 21, 1, 46, 39,
25, 11] focus on the more challenging single image spec-
ular highlight removal problem. However, while they are
developed based on strict assumptions/priors such as color
space analysis and sparse matrix decomposition, they can
easily fail in scenes with complex background or illumina-
tion conditions, where their assumptions (e.g., uniform sur-
face colors) are violated. Figure 1 shows two examples that
the state-of-the-art method [! 1] can not accurately remove
the highlights from the object textures. This under/over re-
moval can significantly disrupt object appearances and pro-
duce noisy backgrounds.

On the other hand, the success of deep learning has been
witnessed not only in high-level semantic vision tasks [29,



, 37, 10], but also in various low-level visual tasks, such
as image dehazing [7, 38], deraining [35, 52] and shadow
removal [36, 20]. Compared with traditional methods, deep
learning has the superior ability to exploit the contextual
information for recovering the images from degradation.
Nonetheless, due to the lack of large scale high-quality
training data in the highlight removal area, deep learning
is still less explored. Although there is a recent method
from Shi et al. [44], which proposes to use deep learning
to decompose the image into diffuse albedo, shading and
specular highlight components. However, the highlight re-
moval problem is not addressed, as directly subtracting the
decomposed specular highlight from the original image will
cause severe color distortion.

In this paper, we propose to leverage deep neural net-
works to learn discriminative features in an end-to-end man-
ner, for the single image highlight removal problem. Fol-
lowing the dichromatic reflection model [41], we formu-
late the highlight removal problem as a signal separation
problem as: I;(z) = I(x) — I;(z), where z is the pixel,
I4(z) and I(x) are diffuse reflection and specular reflec-
tion, respectively. Instead of directly learning the com-
plex mapping between the input image /(x) and the desired
highlight-free image I;(x), we propose to first estimate the
residual specular image I (), and then obtain the highlight-
removed I:i(a:) based on the specular estimation. To this
end, we construct a large-scale synthetic dataset consists of
highlight/highlight-free image pairs via [16] to facilitate the
learning. We also collect a real highlight dataset from Im-
ageNet [5] for evaluation. We then propose a novel CDFF-
Net that fully exploit the low-level features in a top-down
aggregation manner, for accurately preserving the object ap-
pearances and image background while removing the high-
lights.

To summarize, this work has the following contributions:

e We propose a novel CDFF-Net that can learn discrim-
inative features for highlight removal, from the pro-
posed cumulative dense feature fusion strategy as well
as the cascade learning scheme.

e We construct a large scale synthetic dataset of 11000
image pairs with/without highlights, which is proved
to be able to generalize well on real world data.

e Extensive experiments show that the proposed method
plays favorably against not only state-of-the-art high-
light removal methods, but also the single image de-
raining methods.

2. Related Work

In this section, we briefly review previous works in spec-
ular highlight removal field, and one related work from in-
trinsic image decomposition field.

Multi-Image Based Methods. Since the specular high-
lights are direction-dependent, many previous works resort
to use multiple images as input to impose additional con-
straints on this ill-posed highlight removal problem. Some
works take multiple images with one specific scene from
different point of views [27, 49, 48], while others [28, 40]
use a series of images taken under the light source at differ-
ent positions. Recently, Shah et al. [42] propose to leverage
the feature correspondences across video frame sequences
to remove the specular reflections.

While these methods use additional constraints from the

multi-image inputs to help highlight removal, in this paper,
we aim to address the more challenging single image high-
light removal problem.
Single Image Based Methods. The pioneering work of Tan
and Ikeuchi [47] proposes to first estimate pseudo specular-
free images, and then iteratively remove the specular com-
ponents via comparing the intensity logarithmic differentia-
tion of the generated pseudo specular-free images and input
images. Yang et al. [51, 50] extend this method and propose
to use the bilateral filtering method for the comparisons of
pseudo specular-free images and input images, to their goal
of real-time inference. Since these pseudo specular-free im-
ages can significantly affect the final specular removal re-
sults, a lot of methods are then developed varying in the way
of generating better pseudo specular-free images, based on
the dark channel priors [21], intensity ratio based specular
fraction computation [43], and {5 chromaticity [46].

Other assumptions/priors are also developed to alleviate
the heavy reliance on the quality of pseudo specular-free
images. Ren et al. [39] introduce the global color-lines con-
straints into the dichromatic reflection model and use this
model for specular and diffuse reflection recovery. Li et
al. [25] propose to leverage physical and statistical priors
from specialized domain knowledge to remove the specular
highlights in facial images. Akashi and Okatani [!] for-
mulate the specular highlight removal problem as a sparse
non-negative matrix factorization problem. Guo et al. [11]
generalize the idea from [ 1] and propose a sparse and low-
rank reflection model for highlight removal, which can be
efficiently optimized by the augmented Lagrange multiplier
method.

Nonetheless, as these methods require strict prior as-
sumptions, real scenes with complex background and illu-
mination conditions can easily fail these methods and cause
the under/over highlight removal problem. On the contrary,
we propose in this paper to address this problem by using
the Cumulative Dense Feature Fusion network with a large
scale training dataset, which can adaptively learn discrimi-
native features for detecting and removing highlights.
Intrinsic Image Decomposition. Previous intrinsic image
decomposition works [3 1, 32] do not consider the specular
reflection while factorizing the input image into an albedo
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Figure 2: The architecture of our proposed CDFF-Net. Given an input image with highlights, it first predicts a specular
layer via an encoder-decoder with skip connections (upper part). The estimated specular layer is then combined with the
input image for producing the final specular-free image (bottom-right part). The cumulative dense feature fusion connections
are introduced to the encoder-decoder to facilitate the feature propagation in a top-down manner for enriching the low-level
features with high-level contextual information (bottom-left part).

image and a shading image. A recent work from Shi ef
al. [44] proposes to use deep network to decompose the im-
ages into three components, i.e., albedo, shading, and spec-
ular reflection.

However, directly applying their method by subtracting
the decomposed specular reflection from the input is not re-
liable as it may cause severe color distortion. This is mainly
due to the fact that they do not consider the reconstruc-
tion consistency after decomposition. On the contrary, we
propose to learn the highlight/highlight-free mapping via a
sub-stage of estimating the “residual highlight layer”, which
helps us to preserve better object details and colors after re-
moving highlights.

3. Proposed CDFF-Net

To address the over/under removal of highlights prob-
lem for images with complex backgrounds and illumination
conditions, we propose a novel Cumulative Dense Feature
Fusion network (CDFF-Net) to augment the low-level fea-
tures with rich contextual information by recursively aggre-
gating high-level features in a top-down manner. A cas-
caded learning strategy is further applied to effectively de-
couple the highlight/highlight-free mapping learning pro-
cess into two inter-dependent stages, i.e., learning the spec-
ular layer and learning the highlight-free image reconstruc-
tion.

3.1. Overview

As shown in Fig. 2, given one normalized image as in-
put, the proposed CDFF-Net first predicts a specular layer
via an encoder-decoder with skip connections (upper part
of Fig. 2). The estimated specular layer is then combined
with the input image for producing the final specular-free
image (bottom-right part of Fig. 2). The cumulative dense
feature fusion connections are introduced into the encoder-
decoder to facilitate the feature propagation in a top-down
manner for enriching the low-level features with high-level
contextual information (bottom-left part of Fig. 2).

3.2. Cumulative Dense Feature Fusion

While separating the specular reflection from the objects
is extremely challenging, we observe that low-level features
play an important role in recovering the object details dur-
ing highlight removal process. However, as highlights can
severely bury the local details, causing few meaningful fea-
tures can be extracted by the shallower convolutional layers,
we therefore propose the cumulative dense feature fusion
(CDFF) strategy to further exploit the low-level features,
which is a generalization of the dense connection idea.

Dense connection was first proposed in [14] for image
classification. It creates short paths from early layers to
later layers in a network. The idea is similar to ResNet [13].
Dense connections can greatly alleviate the vanishing gra-
dient problem and strengthen the feature propagation. The
original dense connection is implemented via Dense Block,



which is essentially a different network architecture and can
not be directly applied to our pre-trained encoder network.
To exploit the ability of dense connection, one possible so-
lution is first simply extracting the low-level features from
different layers in the encoder, then upsampling them to
the same size and finally concatenating them together. As
shown in Fig. 3(a), we call this naive dense feature fusion.
However, due to the pooling layers in the encoder, the fea-
ture map from the center layer of our network is 32 times
smaller than the original image and simply upsampling the
feature map by a large factor will produce a very coarse fea-
ture map, which is not efficient for feature fusion and some-
times will cause severe checkerboard artifacts. To avoid this
problem, we propose the cumulative dense feature fusion
(CDFF) strategy, as shown in Fig. 3(b).

Suppose an encoder network has multiple downsampling
layers. We extract k features with different scales from the
encoder after each downsampling layer, denoted as ¥;(x).
Usually, the number of channels increases as the layer gets
higher, hence directly concatenating all the features together
will not only consume a lot of memories, but also make the
high-level information dominate the fused feature. To ad-
dress this problem, we use a simple convolution operation
to reduce the channels of them to a fixed number. In this
case, each feature ;(x) will contribute the same number
of channels in the fused feature. This fusion strategy will
implicitly give more weights to the low-level features since
while the low-level features have fewer channels, the ra-
tio of contributed channels to the original channels is larger
than high-level features. If each 1;(x) contributes ¢ chan-
nels, the total number of channels in the final fused feature
isk x /.

Let Up(-), Cat(-) and Conuv(-) denote the upsampling,
concatenation and convolution operations. The CDFF strat-
egy can be formulated as follow:

Yr(x) = Conv(Up(yr(x))),

Yi(x) = C’om;(Up(Cat(wi(x),1/~1i+1(x)))), (D
i=k—1,...1.

Here, the channel number of ¢ (z) is (k4 1 — i) x £. Each
Up(-) will upsample the i—th feature v;(2) to the same size
of its previous feature v;_1(x). The final fused feature is
11 () whose channel number is & x /.

In our network, the encoder has 5 max-pooling layers
(k = b) and each of them will downsample the input fea-
ture by the factor of 2. Empirically, to save the memories
required in training, we set the number of channels of the
fused feature as 60 and each v;(x) will contribute 12 chan-
nels. The illustration is shown in Fig. 3(b).

We use the fused feature in two parts. Let’s denote the
output feature of the encoder-decoder as F'(2). fspecutar(-)
represents the Conv + BN + ReLU layers used for specu-

lar reflection image generation and femoval(-) TEpresents
the Conv + BN + ReLU layers used for specular-free image
generation. By using CDFF, the prediction of the specular
reflection layer and the specular-free image can be written
like this:

(“B) = fspecular(F(x>7 ((E)),

B )
(@) = fremoval(L(x) — Is(x), Y1 (x)).

QL w

I

3.3. Two-stage Residual Learning for Specular
Highlight Removal

Directly learning to reconstruct the highlight-free images
with recovered object details and colors is still challeng-
ing for deep neural networks, as the highlight intensities are
very difficult to be predicted. To address this problem, we
adopt the deep residual learning strategy to first explicitly
estimate the highlight intensities via predicting a specular
reflection layer, and then obtain a specular-free image based
on the predicted specular reflection. This strategy allows us
to explicitly learn to detect the highlights while preserving
the global properties of background objects (i.e., colors and
structures), before reconstructing the specular-free images.
It also allows additional supervision to be imposed to facil-
itate the learning process of our network.

Formally, we first learn a mapping f(6s), from the in-
put image I(x) to the specular reflection image I5(z) =
I(z) — I(x). The predicted specular-free image I () is
then obtained via learning a mapping f(64), based on I(x)
and the predicted specular reflection image I;(x), where
Iy(z) = f(x),I(z);04). 0, and 4 are the parameters
in the corresponding mappings.

For training our network, we use the /1 loss instead of the
commonly used /5 loss for producing sharpener images:

1 n n .
Limg = ﬁ Z Z”IQ(J:)’L] - 19(1')7]”1

i=1 j=1

1 n n .
+ =5 > D Ma(@)i; ~ L(@)is,

i=1 j=1

3)

where, I,(z) = f(I(x);0,) and Iy(z) = f(I(z), Ls(x); 04).

Additionally, to train the network to be more sensitive
to the differences between the predicted images and the
ground-truth images in the semantical level, we use two
feature losses to compare the images in feature space, also
known as perceptual losses [18, 4, 8, 24]. Specifically,
we obtain the features by feeding the predicted images and
the ground-truth images to a VGG-16 [45] network ¢ pre-
trained on the ImageNet dataset [5], and extract the fea-
tures from the first max-pooling layer. The feature losses
are computed via the ¢; difference as:
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Figure 3: Illustration of the dense feature connection. (a): A
naive dense feature fusion. (b): Proposed cumulative dense
feature fusion (CDFF). ® denotes upsampling and convolu-
tion. @ denotes concatenation.
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Setting the total parameters as © = (6, 0,), the objec-
tive of this network is to find the best parameter © that min-
imizes the loss function:

©" = argmin Ly + Lyeat- 5)
S)

3.4. Implementation and Training

We implement our network with PyTorch [33]. The
structure of the encoder-decoder network is similar to Seg-
Net [2], which was proposed for semantic segmentation.
We use a pre-trained VGG-16 [45] as the encoder. The con-
volutional layers in the rest parts are initialized with kaim-
ing_normal [12]. We train the network for 60 epochs with
batch size 6 on an Nvidia GTX 1080Ti GPU. The weights
are optimized using the Adam optimizer[22] with weight
decay as 0.0005. The initial learning rate is le-4 and de-
creased by a factor of 10 every 20 epochs.

4. Dataset
4.1. Synthetic Data

Most of the traditional methods for specular highlight re-
moval are based on color space analysis or matrix optimiza-
tion. These methods do not require a large training dataset.
To the best of our knowledge, there is no public large-scale
dataset for single image specular highlight removal. While
[44] creates a large synthetic dataset for intrinsic image de-
composition which contains specular components, currently
the dataset is not available.

To create synthetic images with specular highlights, we
use more than 10,000 3D objects with albedo texture from
ShapeNet, a richly-annotated, large-scale dataset of 3D
shapes [3]. Similar to the rendering method in [44], we
use the modified Phong reflectance model [23, 34] to gener-
ate the specular reflection and diffuse reflection for the 3D
objects. Each object is rendered with random view point
and different highlight intensity. The renderer we use is
Mitsuba[ 16], a research-oriented rendering system in the
style of PBRT.

Different from the method in [44], which renders the
specular reflection and diffuse reflection separately and then
uses ImageMagick [15] to synthesize the specular highlight
image, we render a specular highlight image by rendering
the specular and diffuse reflections together. Besides, to
make the rendered image looks more like a real image, we
set the emitter as sun and sky. Some synthetic images are
shown in Fig. 5. While the images are rendered without
backgrounds, extensive experiments show that our network
trained with these data can handle the background high-
lights properly.

4.2. Real Data

To make comprehensive analyses of our method and
test its generalization performance, we also create a small
dataset containing images in the wild for qualitative com-
parison. These images are collected from ImageNet [5]. We
select the images that contain objects with notable specular
highlights. Due to the diversity of ImageNet dataset, the
collected images have various backgrounds and complex il-
luminations.

5. Experiments

To verify the effectiveness and robustness of our method,
we evaluate it on both synthetic dataset and collected real
images. We compare our method with some previous
works: Ren et al. [39], Shen and Zheng [43], Tan et al. [47]
and Guo et al. [11]. The similarity evaluation metrics are
PSNR and SSIM. We also compute the RMSE as error met-
ric. The comparison among different parts of our network
are also presented in ablation study.

5.1. Results on Synthetic Dataset

We compare quantitative and qualitative performance of
different methods on the synthetic dataset. Table 1 shows
the quantitative comparisons between our method and the
previous works. It can be clearly observed that the proposed
CDFF-Net outperforms the previous methods greatly.

To visually demonstrate the effectiveness of our method,
results on some sample images are presented in Fig. 4.
Compared with other methods, the proposed CDFF-Net can
remove the specular highlights effectively without causing
severe color distortions.
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Figure 4: Results of comparing our method with state-of-the-art methods on the synthetic dataset. From left to right: input,
Guo et al. [11], Ren et al. [39], Shen and Zheng [43], Tan et al. [47], generated specular by our method, our output, ground-
truth. Our method can remove the specular highlights without changing the original color greatly.

Figure 5: Samples of our synthetic dataset. Top row: Im-
ages with specular highlights. Bottom row: Corresponding 5.3. Ablation Study
ground-truth images without specular highlights.

5.2. Results on Real-World Images

The performance of the proposed method is also eval-
uated on the real-world images collected from ImageNet.
Some results are shown in Fig. 6.

The comparison demonstrates that our method achieves
favorable performance over previous methods. [39], [43]
and [47] are very sensitive to the backgrounds and color de-
viations. [ 1] is robust but our method can generate images
with more coherent contents and fewer noises.

.

The first ablation study is conducted to demonstrate the
improvements obtained by the CDFF strategy compared

Method ‘ PSNR ‘ SSIM ‘ RMSE \, ‘ with the naive dense feature fusion (NDFF). The two mod-
Tan et al. [1] 21578 0.865 3547 els are trained and tested with the same configuration on
the same dataset. Results are shown in Table 2. It can be
Shen and Zheng [43] 27.977 0.935 2.982 b d that CDEF has b " h
Ren et al. [39] 28.925 0.939 3.060 ;I;fl::rl;/e that strategy has better performance than
Guoetal. [11] 29.743 0.971 3.213 '
Ours 40.673 0.990 2.112

Method [ PSNR * [ SSIM ~ | RMSE \ |

w/ CDFF | 40.673 0.990 2.112
Table 1: Quantitative results on the synthetic dataset. w/ NDFF | 40.405 0.990 2.164

Table 2: Comparisons between CDFF and NDFF.



(a) Input
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Figure 6: Results of comparing the methods on the collected real images. From left to right: input, Tan et al. [47], Shen and
Zheng [43], Ren et al. [39], Guo et al. [11], our output, generated specular by our method. Results show that our methods
can dealing with complex backgrounds and illuminations more effectively.

In the second ablation study, we demonstrate the effec-
tiveness of different parts in our network. Specifically, we
evaluate the effectiveness of the perceptual loss and CDFF
strategy. The results are shown in Table. 3. Visual compar-
isons on two real images are shown in Fig. 7.

From the comparison we can see that without CDFF,
the qualities of the generated specular-free images degrade
greatly and there will be severe color distortions.

Method [ PSNR ' | SSIM * [ RMSE \ |
w/o CDFF 38.174 0.989 2.754
W/0 Leqt 39.568 0.988 2.307

Ours complete | 40.673 0.990 2.112

Table 3: Quantitative comparisons on synthetic images
among multiple ablated models of our method. “w/o
CDFF” denotes our method trained without CDFF strategy.
“w/o Lyeq¢” denotes our method trained without perceptual
loss.

(a) Input

(b) w/o CDFF  (c) W/o Lyfeq: (d) Full model

Figure 7: Visual comparisons on two real images among
multiple ablated models of our method. “w/o CDFF” de-
notes our method trained without CDFF strategy. “w/o
L ¢cqt” denotes our method trained without perceptual loss.

5.4. Extensions

To demonstrate the generality of our approach, we also
train our network for de-rain. Typically, the rain-streak in



a rainy image is modeled as an additive residual compo-
nent. Our network can be directly applied to this task. We
train and test our network on the RainlOOL dataset created
by [52]. We compare our method with several state-of-the-
art methods mentioned in [52]. The quantitative results are
shown in Table 4. From the table we can see that our method
can achieve comparable results compared with the state-of-
the-art methods. Qualitative results on Rainl/00OL and real
images are shown in Fig. 8 and Fig. 9 respectively.

[ Method [ PSNR ™ [ SSIM ~ |

ID[19] 23.13 0.70
DSC [30] 24.16 0.87
LP[20] 29.11 0.88
CNN [6] 23.70 0.81
SRCNNTJ17] 32.63 0.94
JORDER[52] 36.11 0.97
Our network 31.76 0.96

Table 4: Quantitative comparison on Rainl00L dataset. The
results of the state-of-the-art methods are reported in [52].

(a) Rain image (b) Prediction

(c) Ground-truth

Figure 8: Results of our method on RainlOOL. Left: rain
image. Middle: output image. Right: ground-truth image.

(a) Rain image  (b) Yang et al. [52] (c) Our CDFF-Net

Figure 9: Results on real rain images. Left: rain images.
Middle: results of [52]. Right: our results.

6. Conclusion and Future Work

In this paper, we have presented a novel deep learn-
ing method for the single image highlight removal prob-
lem. Specifically, we have constructed a large scale syn-
thetic dataset of 11000 pairs of images with and without
highlights, for training and testing. It will be made pub-
licly available for future research. We have also collected
a real dataset that contains images of highlights for evalua-
tion. We have designed a novel cumulative dense feature
fusion (CDFF) network that effectively refines low-level
features from the higher layers in a top-down manner for
producing high-quality highlight-free images. Moreover,
a two-stage residual learning strategy is applied to explic-
itly decouple the highlight removal problem into two inter-
dependent stages, i.e., highlight detection and highlight re-
moval. Extensive evaluations on both synthetic and real
data demonstrate the superiority of the proposed method
against the state-of-the-art highlight removal methods. We
also show the potential of the proposed network by applying
it to the single image deraining task.

Our method does have limitation. As illustrated in Fig.
10, our method may fail in scenes that the highlight region
is large and overexposed, as our method can not recover the
original object colors after removing the specular. A possi-
ble solution may be to incorporate the generative methods,
such as GAN [10], for generating visually pleasing back-
ground.

(a) Input

(b) Our CDFF-Net (c) Our specular

Figure 10: A challenging case with overexposed highlight
regions. Our method can remove most of the specular high-
lights, but can not fully recover the original color of this
region.
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